(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
times(0, y) → 0
times(x, 0) → 0
times(s(x), y) → plus(times(x, y), y)
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
fac(s(x)) → times(fac(p(s(x))), s(x))
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
plus(x, s(y)) →+ s(plus(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
times(0', y) → 0'
times(x, 0') → 0'
times(s(x), y) → plus(times(x, y), y)
p(s(s(x))) → s(p(s(x)))
p(s(0')) → 0'
fac(s(x)) → times(fac(p(s(x))), s(x))
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
times(0', y) → 0'
times(x, 0') → 0'
times(s(x), y) → plus(times(x, y), y)
p(s(s(x))) → s(p(s(x)))
p(s(0')) → 0'
fac(s(x)) → times(fac(p(s(x))), s(x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
times,
p,
facThey will be analysed ascendingly in the following order:
plus < times
times < fac
p < fac
(8) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus, times, p, fac
They will be analysed ascendingly in the following order:
plus < times
times < fac
p < fac
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s2_0(
a),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
plus(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
plus(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(plus(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
times, p, fac
They will be analysed ascendingly in the following order:
times < fac
p < fac
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s2_0(
n555_0),
gen_0':s2_0(
b)) →
gen_0':s2_0(
*(
n555_0,
b)), rt ∈ Ω(1 + b·n555
0 + n555
0)
Induction Base:
times(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s2_0(+(n555_0, 1)), gen_0':s2_0(b)) →RΩ(1)
plus(times(gen_0':s2_0(n555_0), gen_0':s2_0(b)), gen_0':s2_0(b)) →IH
plus(gen_0':s2_0(*(c556_0, b)), gen_0':s2_0(b)) →LΩ(1 + b)
gen_0':s2_0(+(b, *(n555_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
p, fac
They will be analysed ascendingly in the following order:
p < fac
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
p(
gen_0':s2_0(
+(
1,
n1276_0))) →
gen_0':s2_0(
n1276_0), rt ∈ Ω(1 + n1276
0)
Induction Base:
p(gen_0':s2_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
p(gen_0':s2_0(+(1, +(n1276_0, 1)))) →RΩ(1)
s(p(s(gen_0':s2_0(n1276_0)))) →IH
s(gen_0':s2_0(c1277_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
p(gen_0':s2_0(+(1, n1276_0))) → gen_0':s2_0(n1276_0), rt ∈ Ω(1 + n12760)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
fac
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fac(
gen_0':s2_0(
+(
1,
n1492_0))) →
*3_0, rt ∈ Ω(n1492
0 + n1492
02)
Induction Base:
fac(gen_0':s2_0(+(1, 0)))
Induction Step:
fac(gen_0':s2_0(+(1, +(n1492_0, 1)))) →RΩ(1)
times(fac(p(s(gen_0':s2_0(+(1, n1492_0))))), s(gen_0':s2_0(+(1, n1492_0)))) →LΩ(2 + n14920)
times(fac(gen_0':s2_0(+(1, n1492_0))), s(gen_0':s2_0(+(1, n1492_0)))) →IH
times(*3_0, s(gen_0':s2_0(+(1, n1492_0))))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(19) Complex Obligation (BEST)
(20) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
p(gen_0':s2_0(+(1, n1276_0))) → gen_0':s2_0(n1276_0), rt ∈ Ω(1 + n12760)
fac(gen_0':s2_0(+(1, n1492_0))) → *3_0, rt ∈ Ω(n14920 + n149202)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
(22) BOUNDS(n^2, INF)
(23) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
p(gen_0':s2_0(+(1, n1276_0))) → gen_0':s2_0(n1276_0), rt ∈ Ω(1 + n12760)
fac(gen_0':s2_0(+(1, n1492_0))) → *3_0, rt ∈ Ω(n14920 + n149202)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
(25) BOUNDS(n^2, INF)
(26) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
p(gen_0':s2_0(+(1, n1276_0))) → gen_0':s2_0(n1276_0), rt ∈ Ω(1 + n12760)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
(28) BOUNDS(n^2, INF)
(29) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(n555_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n555_0, b)), rt ∈ Ω(1 + b·n5550 + n5550)
(31) BOUNDS(n^2, INF)
(32) Obligation:
Innermost TRS:
Rules:
plus(
x,
0') →
xplus(
x,
s(
y)) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
x,
0') →
0'times(
s(
x),
y) →
plus(
times(
x,
y),
y)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
s(
0')) →
0'fac(
s(
x)) →
times(
fac(
p(
s(
x))),
s(
x))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
fac :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(34) BOUNDS(n^1, INF)